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ABSTRACT 

Background and Purpose  

Process mining for conformance analysis consists of comparing a reference process model against a data-
driven process model generated via log files from information technology systems. However, in the 
absence of a complete reference process model, we found no suggested approaches in the literature to 
address the need for evaluating process conformance among different healthcare facilities to assess 
standardization of care. Our goal is to find similarities and dissimilarities in data-driven process models 
among US Veterans Health Administration (VHA) facilities that can be indicative of patient safety issues. 
Our hypothesis was that the analysis would not produce statistically significant differences in outcome. 

Methods  

We present a unique implementation of conformance analysis in process mining that consists of 
combining process mining, process mapping and statistical metrics. We illustrate our approach by 
applying it to the analysis of two clinical radiology order process models generated from healthcare data 
provided by two similar facilities in the VHA. 

Results  

The comparative assessment showed that about 70% of the orders completed successfully and 30% were 
not completed due to policy and duplications. Our analysis found a good statistical correlation between 
both facilities, as the Spearman’s correlation coefficient between facilities for the frequency of cases per 
total hours was 0.87879, for the frequency of cases by state transition was 0.79702 and for the throughput 
time per state transition was 0.63582. Additional statistical analyses using the Mann-Whitney U test and 
the root mean square error both produced values that were not significant. 

Conclusions  

The foregoing approach validated our hypothesis by demonstrating a good statistical correlation of data 
describing the flow of clinical radiology orders absent a credible reference model. Finding good 
agreement between both facilities was important in confirming that the clinical orders flow in a similar 
manner, suggesting standardization of care. 

 

Keywords: Process mining, conformance analysis, health information systems, anomaly detection, health 
information technology hazards, data mining, data analytics, conformance assessment 

 

1. INTRODUCTION 

In healthcare organizations, Health Information Technology (HIT) processes [for example, the 
radiology order process within the VHA] often can be observed only on a case-by-case basis. This is a 
significant limitation because, while helpful on an individual basis, it does not produce a comprehensive 
understanding of the same process involving different providers, services, or facilities. Thus, large scale 
HIT processes within healthcare facilities have been essentially opaque to individuals/groups having 
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responsibility for assessing whether those processes conform to procedures/objectives of the subject 
organization and that there exists standardization of care among the different facilities. 

1.1 CONFORMANCE ANALYSIS OF HIT PROCESSES 

The motivation for performing such conformance analyses of clinical order processes is to identify 
possible anomalies that could cause patient harm from HIT, which we define as a hazard. It is also 
heightened by the recognition that hazards can be associated with deviations from an established process. 
The hazard we are investigating in this study is when the clinical service of a patient is not fully 
completed. Ideally, a clinical order should move along the process via an expected pathway. However, 
deviations can occur in the form of the process ends before the intended outcome, such that a clinical 
order is placed, yet never moves forward in the process. If the process is extended, there is potential that 
the intended clinical task is delayed or perhaps not completed. Unintended deviations from the expected 
clinical order flow may have implications for patient safety. 
In the context of the current study, if we understand and identify what is normal and correct with the flow 
of clinical order processes, and what can precipitate unsuccessful flows, we will be able to identify when 
certain conditions deviate from normal or are completely incorrect. Then, we can create observation 
points for defined rules/metrics that serve as anomaly detectors and identify correct deviations such as 
purposeful discontinuations of clinical orders. The study presented herein is a continuation to our 
previous works in [1-3]. 
Our objectives are focused on HIT processes at the VHA and include the following: 

• To discover the clinical order process for each of the four clinical domains: consults, radiology, 
laboratories and medications, 

• To identify any observable rules between events in those processes, 
• To identify deviations that may be impactful to the service completion process and thus may 

influence patient safety. 

1.2 PROCESS MINING FOR CONFORMANCE ANALYSIS 

Process mining (PM) provides the tools to better understand large scale processes to identify 
discrepancies between processes as envisioned and processes as performed. It can be used to verify 
conformance adherence between a model process and an observed process. We want to know how faithful 
the model is to our understanding of the true underlying data-driven process precipitated by actors 
interacting with the real world. We as humans are data generating agents and from a causal perspective, 
the latter process is how the world behaves. 

Process mining for conformance analysis (PM4CA) consists of comparing a defined reference process 
model against a data-driven process model constructed via log files from information technology systems. 
That approach assumes the existence of a reference process model. However, our experience working 
with healthcare data is that, although there are many well documented high-level clinical processes, not 
all processes are documented; and those which are documented, may be incomplete or may become 
rapidly out of date due to fast evolving circumstances (personnel changes, evolving technology, new 
products, etc.). Moreover, some processes change so fast that segments of a process are either missing or 
not documented. 

Although there are prescriptive/descriptive processes or workflows for healthcare services at the VHA, 
our studies revealed that each clinical order follows an individual, sometimes unique, path. Also, those 
clinical order flows are not documented in the Business Process Notation (BPN) flowcharts maintained 
by the VHA; what the BPN flowcharts did document was the clinical service. As a result, we observed the 
following discrepancies: 

• Some observed behaviors in the logs were not captured in the VHA’s BPN clinical service 
flowcharts; for example, holds and discontinuations. 
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• Some behaviors depicted in the VHA’s BPN clinical service flowcharts were not included in 
the selection of events to create the logs (for example, reviewing prior exams, education materials 
given to the patient, patient consent, patient preparation, resulting imaging, and external imaging 
review). 

 
Thus, our studies determined that a “reference model” was not established for clinical orders. 

Furthermore, it was perceived that a complex effort would be required to map VHA’s BPN clinical 
service flowcharts to several database schemas in the VHA’s Corporate Data Warehouse (CDW).  
Instead, this absence of a reference model to track the clinical order process for conformance was 
overcome in our work by using a unique implementation of conformance analysis in PM described in the 
following section. 

1.3 A NOVEL APPROACH 

The approach presented herein resulted from our need to address the absence of a reference model to 
track the clinical order process for conformance, as we had discovered when analyzing the clinical orders 
process through HIT systems, from creation to completion, to identify anomalies that could endanger 
patient safety. In this study, we present a unique implementation of conformance analysis in PM which 
consists of using two clinical order process models generated from healthcare data from similar facilities 
in the VHA.  

For each facility, two process models were generated. One was from the raw data from CDW and 
another generated from the association of the events in the raw data to states using the OASIS [4] human 
task state transition diagram as reference model. Here, our focus is on PM for anomaly detection for 
patient safety. We describe some of the challenges that we encountered, and lessons learned. 

PM4CA examines adherence of executed processes to model processes. With PM4CA, it is possible to 
detect process failures and breakdowns that normally would not be found or would only be detectable at a 
later stage with potentially more severe impact on healthcare delivery. As such, PM4CA provides 
valuable insights into non-adherence within a time frame that is unprecedented. In addition, since process 
failures can lead to serious harm to the patients, this analytical approach has the potential to improve 
patients’ safety prior to harm, besides reaching large numbers of patients. 

PM4CA required us to correlate as many steps as defined in the VHA workflows to CDW data. 
However, to perform a fair comparison, both processes must have analogous sets of activities and event 
sequences. The differences and deviations are documented and reported as part of the analysis. 

1.4 CHALLENGES BEING TACKLED  

In this study, we aim to answer the following research questions: 
i. Can we apply PM4CA between process models of two different VHA facilities? If so, what do 

the process models of the two selected facilities look like? 
ii. Are there deviations in data-driven process models from different facilities? And what are the 

exact differences? 
iii. Are the observed deviations impactful to the clinical service completion that could be harmful 

to the patient? 
We hypothesize that, in a broad comparison of two similar facilities, there should not be statistically 

significant differences between the two in terms of the PM of clinical order processes. 

1.5 OUR CONTRIBUTIONS 

Our scientific contributions are as follows:  
1. We present a unique implementation of PM4CA, since this is typically used when a reference 

model is defined, and one is comparing the data-driven model to that reference model.  
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2. Our goal is to develop a custom approach using PM4CA to identify cases when the service of 
the patient is not fully completed, where we combine PM with process mapping and statistical 
metrics. 

3. We performed the study with VHA healthcare data. We analyze process models designed by 
pathways that are discovered from the data and background knowledge of the mapping to the 
human task state transition (OASIS [4]). Then, we compare the two facilities’ process models 
and statistics for deviation, rather than comparing a data-driven model to a reference model for 
deviation.  

4. We illustrate our findings herein with a use case for radiology orders. 
 
This paper is structured as follows:  
• In the related work section, we present related PM4CA work.  
• In the methods section, we present our approach.  
• In the results section, we present the results of the comparative assessment. 
• Finally, in the last sections, we provide discussion, limitations, future work and conclusion. 

 
2. RELATED WORK 

To our knowledge, PM was presented originally by Agrawal in [5] and has taken more prominence 
thanks to the ample work of Van Der Aalst [6-17], and his numerous collaborators. PM can be seen now 
as a relatively new research discipline that is set between data science, machine learning and data mining, 
on the one hand, and process modeling and analysis, on the other hand. PM adds the process perspective 
to data mining [18-21]. It comprises the application of several deterministic, statistical and ‘intelligent’ 
algorithms to discover association rules between steps, and from the association rules, PM discovers the 
process in log files from information systems [6, 7]. In addition to discovering the process, PM 
approaches generate metrics of frequency, performance and conformance [22]. 

The number of research articles related to the application of PM in healthcare follows a growth trend. 
In the published literature, we found several works related to literature review on PM specifically for 
healthcare [23-25]. All of them present evidence, at the time of publication, that the field has been 
growing in the previous decade. For example, in 2016, Rojas et al [23] presented a literature review in 
which he identified 74 articles concerned with PM in healthcare. In the same year, Ghasemi et al [25] 
identified 2371 publications related to PM, 168 of which were related to PM in healthcare. In 2018, 
Erdogan’s systematic mapping of PM studies in healthcare analysis [24] found greater distribution of 
studies for healthcare processes than for clinical pathways. Both Rojas’s and Erdogan’s works report that 
most PM for healthcare studies is in the oncology medical field, followed by surgery. Erdogan’s study 
found that most PM for healthcare works refers to services in departments, or clinical pathways and 
clinical services. Williams published a literature review of PM in primary care in [26]. Dos Santos’s study 
in [27] is the most recent systematic mapping of general PM that states conformance analysis is the 
second most active research topic. Kusuma presented a literature review of PM in cardiology in [28].  

Thus, PM has been applied to numerous studies in healthcare [18-21, 29]. Recent examples of such 
studies follow. In [30] Kusuma et al presented a novel application of PM focused on a feasibility study of 
disease trajectories. Gatta et al presented a framework for event log generation and knowledge 
representation for PM in healthcare [31]. 

Since inception, PM was meant to be used in decision support. For example, in [13] Van Der Aalst 
stated that “The outcome of PM is a better understanding of the process and accurate models that can 
safely be used for decision support because they reflect the reality”. Another example is the work by Ying 
Liu in [32], where a systematic and generic business process simulation approach for operational decision 
support was presented, in which processes were modeled using graphs and nodes were events from 
workflow logs. 
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PM4CA had its origins in studies of graph similarity and process model similarity. Since the early 
2000s, there have been studies on graph similarity and business process model similarity [33] 
measurements; for example, Agrawal presented a definition of conformance graph in [5] and process 
model similarity. Recent examples of graph matching algorithms for business process include the work of 
[33] by Dijkman et al, and a study in workflow simulation for operational decision support using event 
graph through PM by Liu et al in [32]. Graph comparison is a prominent field and there are many research 
articles in this topic. We would like to mention the excellent work of Wills et al who recently published 
their work on metrics for graph comparison as a guide for practitioners in [34]. 

PM4CA is well represented in [6], [35], [36] and [37]. Specifically, Rozinat [35] describes work on 
conformance checking of process based on monitoring real behavior. Munoz-Gama’s book [36] examines 
conformance checking and diagnosis in PM by comparing observed and modeled processes. Carmona’s 
book on Conformance Checking [37] focuses on relating processes and models and provides an extensive 
presentation on conformance techniques based on the principle of alignment or the shortest path through 
the process model;  the latter also presents decomposition and heuristic checking techniques. An approach 
for conformance checking that uses a decomposition technique for large processes is presented in [38]. 

PM4CA has been implemented in several plugins in the open source PM toolkit ProM1 [16], and some  
examples are the following: Rozinat’s [35] conformance checker, Munoz-Gamma and Carmona’s 
ETConformance checker [39], and in [40] Burattin and Carmona presented a framework for online 
conformance checking, to name a few. In the private arena, the companies Celonis2 and Uipath3 provide 
modules for conformance checking in their PM solutions.  

PM4CA in healthcare has been applied largely to both the analysis of healthcare processes and clinical 
guidelines. Recent studies include the following: Rinner et al [41] presented a study on long running 
processes in the context of melanoma surveillance; Fernandez-Llatas et al [42] presented a study 
analyzing medical emergency processes; Badakhshan [43] et al presented a study of PM for process 
analysis, conformance and improvement for the process of pre-hospital emergency department; Tamburis 
et al [44] presented an approach to investigate conformance between a log file and a simulation tool’s 
generated data while linking PM to discrete event simulation modeling; Kukreja et al [45] applied 
PM4CA to compare different PM approaches using a sepsis case study;  Van Dongen et al [46] presented 
a conformance checking approach focused on mixed-paradigm process models; Asare et al [47] presented 
a conformance analysis between processes and the workflows on hospitals; Helm et al [48] introduced a 
modeling representation method based on multi-perspective declarative PM and a novel algorithm to trace 
and verify conformance; and Marazza et al [49] presented an approach to compare process models for 
patient populations and a case study in breast cancer care, by using cross-log conformance checking and 
standard graph similarity metrics. 

Because of the abundance of the data and the complexity of the healthcare processes, new 
methodologies have recently surged in applications of PM to healthcare; for example, Pereira’s work in 
[50] presents a case study in a tertiary hospital of PM project methodology in healthcare. In addition, 
recommendations have been published about the use, application, challenges and lessons learned; see for 
example [51]. 

Foregoing paragraphs present evidence of a growing trend in the number of studies applying PM for 
healthcare. However, the use of PM for clinical decision support to improve patient safety is still an area 
where more research needs to be performed. Our observations are consistent with the work of Williams et 
al in [52], whose findings imply a lack of work focused on primary care for patient safety. Williams et al 
[52] presented a study of PM in primary care in the UK, where they studied how to avoid adverse events 
due to hazardous prescribing. However, we were not able to find other references of the application of 
PM4CA in healthcare dedicated to identifying possible anomalies that could cause patient harm from HIT 

 
1 https://www.promtools.org/ 
2 https://www.celonis.com/ 
3 https://www.uipath.com/ 
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systems. To our knowledge, at the time of writing this paper, Williams et al [52] and this paper are the 
first studies focused on the latter topic. 

 
3. DATA AND METHODS 

3.1 DATA 

We focused our analysis on a selection of radiology orders from the VHA’s CDW, which stores 
healthcare data. The orders were randomly selected for two different facilities. The observation window is 
from January 1st to December 30th, 2019. VHA has a way to classify their facilities based on their 
complexity [53]. The selected facilities’ complex level is Type 1A, that is, these facilities have high 
complexity in terms of patient risk, high levels of teaching and research, high number and breadth of 
physician specialist; finally, they contain level 5 intensive care units. This study was performed by 
creating and analyzing event sequences of radiology orders in two enclave computer ecosystems: a) the 
Knowledge Discovery Infrastructure and b) the BlueRidge Collaborative Environment for Research 
Integration. Both of those computer facilities are located at Oak Ridge National Laboratory4. Researchers 
access and analyze HIT data within specifically augmented computer power and storage in these two 
secure enclaves, which follow Health Insurance Portability and Accountability Act (HIPAA) rules 
compliance and strict privacy and cybersecurity regulations to ensure the data stays secure. The latter is a 
prime requirement during the analysis of VHA’s healthcare data. 

3.2 METHODS 

Figure 1 depicts each step of our approach. The steps of our approach are described in Table 1: 

Table 1. Description of the comparative assessment approach presented herein. 

Step No. Step Description 
1.  Data identification and 

selection 
Data identification and selection was performed by using the 
Entity Relationship diagrams of the VHA’s CDW database and 
doing exploratory querying. That included identifying dates, 
activities, and status type columns of the different data domains 
for clinical orders. 
 

2.  Data extraction We wrote structured query language (sql) scripts to extract the 
data, preprocessed and stored in new database schemas. The 
creation of these smaller database schemas allowed us to work 
with reduced dataset selected from the CDW. 

3.  Data preparation Data preparation was performed within the schemas created in 
Step 2 within CDW. We wrote sql scripts to generate sequences 
of events for each case by following the PM methodology; thus, 
we appended a unique case id to each sequence of events.  Then, 
we generated text files formatted with comma-separated values 
(log files). 

4.  Process mining The log files generated in Step 3 were imported to the Disco 
software tool [22], where the Fuzzy mining algorithm developed 
by Gunther [54] is implemented, to discover the data-driven 
process models of two VHA facilities. These process models 
were used in this study. 
 

 
4 https://www.ornl.gov/ 
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5.  Process mapping a) In order to simplify the very complex process model maps 
generated in Step 4, which had close to 50 different 
activities, we created state transition rules base on the 
OASIS Human Task state transition diagram in reference 
[4]. That state transition diagram describes the conditions 
when human tasks move to different states. This is important 
because we believe that it can be applied to many processes, 
in particular to our clinical orders processes.  

 
b) Next, we identified association rules between activities from 

the sequences of events in the log files to the OASIS task’ 
states. This way, we mapped the OASIS Human Task states 
to clusters of activities based on transition rules which we 
defined specifically for the dataset as presented in [1] and 
[2].  

 
c) The rules in b) were implemented in python scripts which 

generated a new set of log files. The new log files, with state 
transitions per case, were imported to Disco to create the 
state transitions process model maps. Those maps are shown 
in Section 4 as Figures 3 - 6. 

 
6.  Comparative assessment The assessment was performed by comparing, contrasting and 

analyzing descriptive statistics, activities statistics and frequency 
and performance process model maps against one another. Then, 
descriptive statistics were used to compute the Mann-Whitney U-
test, the Spearman’s correlation and the root mean square results 
to compare the two facilities, and to estimate correlation and 
error values.  

 

 
Figure 1. The six-step approach followed to perform this study. 
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4. RESULTS 

Given the abundance of the data and the large size of the process models generated from the raw log 
files of activities, we limit this section to present mostly results of the mapped, simplified data from the 
OASIS state transition process model maps, as the latter are more generalizable.  

4.1 DESCRIPTIVE STATISTICS 

Table 2 Descriptive Statistics of Radiology Order Datasets. 

 Facility A Facility B 
Events 61,122 111,911 
Cases 3,137 5,482 
Activities 39 47 
Median duration 18.5 days 20.3 days 
Mean duration 25.6 days 26.3 days 

 
Table 2 presents the descriptive statistics of the datasets. Facility A had ~3K cases, and 39 different 

activities (each activity is a feature selected from the data set and resembles a step in the life cycle of the 
order). Observe how the median and the mean case durations are close for each facility, which shows that 
there are not too many outliers cases. For the same observation window, Facility B had almost twice the 
number of cases compared to Facility A, with ~5.5K cases. Facility B had 47 different activities. 

4.2 ACTIVITIES 

Figure 2 presents the clustered column chart for facilities A and B. On the left y-axis, we can see the 
frequency and on the right y-axis we can see the relative frequency. We can observe outstanding 
similarities among the frequencies of the activities for both facilities. Observe that there are three main 
groups or clusters of activities’ frequencies. The first one to the left, is related to activities during the 
creating and termination stages. The second one, in the center, is related to the radiology domain when the 
service is scheduled, when the service takes place and when the results are recorded. Finally, the last 
cluster, to the right, mostly concerns activities related to rare radiology exams, which are less frequent 
activities or activities that almost never occurred. 
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Figure 2. Facilities A and B Frequencies and Relative Frequencies of Radiology Activities. 

4.3 PROCESS MODEL MAPS 

Figure 3 and Figure 4 present the (OASIS) Task state transition for Facility A and Facility B, 
respectively. Only frequencies are shown in these maps. These charts present the most dominant 
connections between activities. Notice that these are still complex graphs; however, they only present the 
activities and paths from the most frequent process flows of radiology orders. Each box represents a 
cluster of activities, i.e., activities that were grouped based on times of occurrence and similarity. Each 
arrow or arc presents the process flow between two task’s states. Observe here the different thickness of 
the arrows. The thickness of the arrow represents the frequency, thus, the thicker the arrow, the larger the 
number; and the darker the box, the larger the frequency of visiting that activity. Both charts provided us 
with a good understanding of the radiology’s order process flow between facilities; the flows for the two 
facilities are the same. Both facilities present high levels of similarity. We observed that 10 different 
activities present the highest number of frequency visits; all of them are the same on the process maps of 
both facilities. The thick arrows show that most radiology orders move smoothly from Created to Ready, 
then from Ready to InProgress and finally, from InProgress to Complete. We can also observe that very 
few orders transition from Created to Error. Even more rare are cases that go from Complete to Failed. 
Most cases that are discontinued transition from the Ready, Reserved or InProgress states to the Exited 
state. 

What about the time spent between the different activities of the radiology order process? Figure 5 and 
Figure 6 present the (OASIS) task state transitions for Facility A and Facility B, respectively, with 
throughput times. These process maps present the total duration (as the primary metric) and the mean 
duration (as the secondary metric – in smaller size font). Again, in these performance charts, the thickness 
of the arrows and the shadow of the boxes increase as the frequencies increase. Thus, thicker bright red 
arrows have higher performance values. Observe that bottlenecks are present in two main cases: a) in 
cases of Exited radiology orders for both facilities, and b) in some cases when the radiology order process 
transitions from Ready to Reserved. Further analysis of the latter case shows that the activity selected in 
this stage appears to schedule radiology orders in the future, when the radiology test appointment is 
desired but, of course, not guaranteed.  

The generated process model maps provided information related to the successful and not successful 
termination states which are presented in Table 3. There, we can compare and contrast side by side 
termination states for both facilities. Our results presented in Table 3 show that, in both facilities, about 
70% of the cases were completed successfully, and about 30% of the cases were incomplete, i.e., did not 
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complete successfully. We performed further classification regarding the incomplete cases for three 
different unsuccessful termination cases: Error, Failed, and Exited. We defined the unsuccessful 
termination cases as follows:  

a) Error cases have a discontinuation activity after activities related to the Created state.  
b) Failed cases have a discontinuation activity after activities in the Completed state.  
c) Exited cases have a discontinuation activity after activities in the Ready or Reserved states.  

Table 3 also shows that Failed and Error cases are very rare. Most unsuccessful cases are Exited cases. 
After performing further analysis on those cases, it was determined that those discontinuations are 
concerned mostly with policy and some duplicated records that arise due to imports from other 
subsystems. Consequently, no consequences of patient harm were identified from this analysis. 

Table 3. OASIS Transition States Termination Frequencies and Relative Frequencies of Facilities A and B - Radiology Orders 

Case Termination Classification Facility A Facility B 

 Total Frequency Relative 
Frequency 

Total Frequency Relative 
Frequency 

Total Cases 3137 100% 5482 100% 
Complete  2111 67.29% 3715 67.76% 

Incomplete 
 

Failed  1 0.01% 1 0.01% 

Exited 1020 32.5% 1757 32% 

Error 7 0.2% 10 0.18% 

 
The frequency and performance process maps (Figures 3 - 6) presented in this section provided a better 

understanding of the actual radiology order process flow at the VHA and answered our research 
questions:  

• What do the process models of the two selected facilities look like?  
• Are there deviations in data-driven process models from different facilities?  
By observing the process model maps, we can state that they are very similar. In addition, the figures 

and tables in this section also answered our research question, i.e., 
• What are the of exact differences? 

by providing metrics of the differences in frequencies. The analysis presented in Table 3 answered 
another research question, i.e.,  

• Are the observed deviations impactful to the clinical service completion that could be harmful to 
the patient? 

by providing evidence that cases with discontinuation activities were discontinued due policy and a few 
duplications due to imports from other sub-systems and did not impact any real patient. 
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Figure 3.  (OASIS) Task State Transitions for Facility A - Frequency Process Map for Radiology. 
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Figure 4. (OASIS) Task State Transitions for Facility B - Frequency Process Map for Radiology. 
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Figure 5. (OASIS) Task State Transitions for Facility A - Performance Process Map 
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Figure 6. (OASIS) Task State Transitions for Facility B - Performance Process Map 

4.4 STATISTICAL ANALYSIS 

We performed a Mann-Whitney U test [55] to compare Facilities A and B for the cases presented in 
Table 4. Mann-Whitney U test is a nonparametric test that allows two data groups to be compared without 
assuming that values are normally distributed. The significance level was 0.05 and two-sided. For the case 
of frequency of case per total hours from process start to end the U-value is 24. For p < 0.05, the critical 
value of U is 23, thus, we conclude that the result is not significant. The Z-Score is -1.92762 and its p-
value is 0.0536; therefore, the result is not significant at p < 0.05. For the case of frequency of cases by 
state transition, the value of U is 493.5, the Z-Score is 0.64764 and its p-value is 0.5157. Consequently, 
the result is not significant at p <0.05. Finally, for the case of the throughput time per state transition the 
value of U is 474.5, the Z-Score is 0.8913 and its p-value is 0.3746. Thus, the result is not significant at p 
<0.05. 

Table 4. Mann-Whitney U Test for Facilities A and B. 

 U-value Z-Score Z-score’s p-value 
1) Frequency of cases per 
total hours from process 
start to end 

24 -1.92762 0.0536 

2) Frequency of cases by 
state transition 

493.5 0.64764 0.5157 
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3) Throughput time per 
state transition 

474.5 
 

0.8913 0.3746 

 
In addition, we performed a correlation analysis using Spearman’s correlation coefficient [56]. 
Spearman’s Rho is a non-parametric test used to measure the strength of association between two 
variables, where the value of r = 1 means a perfect positive correlation and the value of r = -1 means a 
perfect negative correlation. The results in Table 5 show high correlation between Facilities A and B for 
the three cases analyzed. The Spearman’s correlation coefficient between Facilities A and B for the 
frequency of cases per total hours from process start to end is 0.87879, for the frequency of cases by state 
transition is 0.79702 and for the throughput time per state transition is 0.63582. The significant value of 
this coefficient is very small at less than 0.05 for each case. Thus, we rejected the null hypothesis that 
there is no correlation, i.e. there is an association, between Facilities A and B for the cases outlined in 
Table 5. Note that no p-values were corrected for multiple testing.  

Finally, the root mean square deviation (error) (RMSD) [57] is also presented in Table 5 for each case 
analyzed. The RMSD column shows that, in all cases, the RMSD is close to 0, i.e. almost a perfect fit of 
the data between the two facilities. The RMSD for the frequency of cases per total hours from process 
start to end is 0.026478, for the frequency of cases by state transition is 0.012718145 and for the 
throughput time per state transition is 0.039521815. 

Table 5. Spearman's Correlation Coefficient (Rho) and RMSD Analysis for Facilities A and B.  

 rs p-value (2-sided) 
 

RMSD 

1) Frequency of cases per 
total hours from process 
start to end 

0.87879 <0.001 0.026478 
 

2) Frequency of cases by 
state transition 

0.79702 0 0.012718145 
 

3) Throughput time per 
state transition 

0.63582 <0.001 0.039521815 
 

 
The data used in the generation of Figures 3-6 was also the source of Tables 4-5. Each row in Tables 4-

5 corresponds, respectively, to Figure 7, the relative frequency by duration from process start to end; 
Figure 8, the relative frequency by state transition; and Figure 9, the throughput time per state transition 
in days for Facilities A and B. Notice that because the volume of data is so large, we included only a few 
cases in those figures to illustrate our point. 

Figure 7 presents the relative frequency by duration from process start to end. We can observe the 
distribution of the frequencies. For Facility A, most cases had a duration between 574 and 1526 hours. 
For Facility B, most cases had a duration between 0-574 hours, and 1050-1526 hours.  
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Figure 7. Relative Frequency by Duration from Process Start to End in Hours for Facilities A and B. 

In Figure 8, which shows the six most common cases of relative frequency by state transition, it is 
observed that the two facilities had close relative frequencies in both the Created to Reserved and Ready 
to Reserved transitions. There was a notable difference between facilities in the Ready to Suspended, 
Suspended to Exited and Ready to Exited transitions. 

In Figure 9, which shows the most common cases of throughput time per state transition, we can 
observe a notable difference between facilities in the Ready to Suspended, Suspended to Exited, and 
Suspended to Reserved transitions. This chart also presents close values in the transition between Created 
to Reserved throughput times. 
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Figure 8. Frequencies by State Transition for Facilities A and B - most frequent cases 

 
Figure 9. Throughput Time per State Transition in Days for Facilities A and B - most frequent transitions 

The OASIS mapping of the data presented in Figures 3-6 and in Table 3, and the statistical analysis we 
conducted on those datasets using the Mann-Whitney U-test, the Spearman’s correlation and RMSD in 
Tables 4-5 in essence make the case that our thesis is satisfied, i.e., there is no statistically significant 
difference between the two studied facilities. 

 
5. DISCUSSION  

5.1 GENERAL AGREEMENT IN RESULTS. 

The hypothesis for standardized care in this study was that the application of a customized PM4CA 
methodology for comparison of data-driven process models from two similar facilities would not produce 
statistically significant differences in outcome. The results shown in the previous section supported that 
hypothesis by showing good agreement between the processes examined within the two facilities. The 
descriptive statistics and the process model maps show that most differences between the two facilities 
were expressed in terms of frequency. 

Observe that the mean duration between facilities (i.e., Facility A 25.6 days and Facility B 26.3 days) is 
so close within the observation window. Our analyzes applying the Mann-Whitney U-test, the 
Spearman’s correlation and the RMSD further confirm our findings. In terms of process, it was noted that 
most cases in the two facilities started and ended with the same event. The results also show that about 
one-third of the orders were discontinued. Those discontinuations are a ‘normal’ institutionalized process 
for dealing with cases in which the electronic clinical orders are incomplete. This particular outcome does 
not mean that the patient has never received the service. Rather, it was determined that those 
discontinuations are concerned mostly with policy and some duplicated records that arise due to imports 
from other subsystems. 
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5.2 IMPACT OF VARYING TEMPORAL CONDITIONS 

A concern arising from the use of PM in this HIT environment is an assumption that all entities in the 
process have the same expected temporal conditions. In reality, even within a clinical domain of interest 
such as Imaging orders, there are conditions in which the process is based on clinical urgency such as the 
“stat” condition. In VHA’s clinical care processes, the “stat” condition indicates an urgency. It is usually 
the highest priority for timeliness to do a task. Specifically, there is a need for those orders to flow 
through the process within minutes to hours. The “stat” condition is usually reserved for the Emergency 
department or Inpatient setting – it can mean that the Doctor/Nurse needs results in a matter of minutes 
because of the patient’s deteriorating condition (or about to get worse). For example, a patient is having 
difficulty breathing and there is suspicion of pneumonia, so the doctor will order a “stat” chest X-ray so 
they can determine if there is pleural effusion and a need to start the patient on antibiotics. In another 
case, the doctor may order a routine chest X-ray to check for progress after, say, two weeks of antibiotics 
– that chest X-ray may be performed in 1-2 days from the time it was ordered. Or a chest X-ray can be 
ordered as part of a routine health physical. For a laboratory test, again some test results are needed in a 
matter of minutes (10 or less minutes) and other test results are simply for routine follow-up care. 

On the other hand, the same type of Imaging order may be specified for a future date in which the 
temporal span of the process is acceptable within a range of time.  Thus, analyzing a process must 
consider the acute clinical state as well as states that are related to follow-up care. For the foregoing 
reasons, PM studies in healthcare need to account for those expected differences. 

5.3 ADDITIONAL CHALLENGES 

There are several challenges to conducting a study on conformance analysis, beginning with the 
limitations presented by both the Business Process Models (BPM) that provide the “ideal” view, and the 
Electronic Health Record (EHR) data which provide the “real” view. In our opinion, both present an 
incomplete picture of the reality. BPM include tasks like reviewing the patient record and interviewing 
the patient, which are not captured in the EHR. The BPM are linear, present a single path for the process, 
and do not reflect the rework, interruptions, or multiple patients cared for simultaneously that we know 
are realistic aspects of healthcare delivery. The EHR data capture only a fraction of the processes outlined 
in the BPM, and do not include system data (log files) that could provide additional insights. Clearly, the 
EHR data source (the CDW) was not designed with the task in mind of tracking or validating BPM.  

Another challenge is determining which deviations or to what degree a deviation from the process 
signals a potential problem. We know from subject matter experts that a process can deviate from the 
ideal path and still have a positive outcome. We also know that due to the nature of healthcare processes, 
new/different personnel can take over a process in progress and this is normal/expected. We also know 
that differences in care environments (inpatient versus outpatient) and the services being provided (an X-
ray versus an MRI versus an ultrasound) can explain differences in time spent at different points along the 
process, and that these differences may be normal/expected. By comparing two facilities that are similar 
in size (patient beds), patient acuity, and population, the differences between the two facilities could at 
least be partially explained by local policies that influence how BPM are executed in real life. 
Unfortunately, we can never know nor measure all local policies that influence execution, or how 
institutional culture may influence that execution. 

One way we could attempt to overcome these challenges is to analyze conformance with data stratified 
by care environment (inpatient or outpatient), type of service (radiology imaging type), urgency (stat or 
routine), and even diagnosis or underlying condition. The number of days out a procedure is scheduled 
could be categorized to provide additional stratification based on a clinically indicated/desired timeframe. 
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5.4 LIMITATIONS AND FUTURE WORK 

The analysis presented herein has several limitations in addition to those mentioned in the above 
sections. Specifically, the study included a limited number of database schemas. Consequently, we may 
have excluded data that could provide more insights into the flow of the clinical orders. In addition, this 
study made conservative assumptions about working hours and holidays during the generation of the 
performance process model maps. Those assumptions may have resulted in slightly shorter mean 
durations between steps. Finally, we observed that when mapping activities to the OASIS Human Task 
State Transition diagram, the transitions between both the Created and Ready states and between the 
Reserved and InProgress states were minimal or non-existent in most cases. Thus, we could have 
represented both cases as one state, which implies the need for a customized state transition for healthcare 
data. 

Finally, this study can be regarded as a pilot project for future work that applies PM4CA to assess a 
range of data-driven processes identified within healthcare facilities. It points out how the creation of 
BPM and data collection can be planned so that they are mutually supporting tasks crucial to the latter 
work scope. That future work needs to focus on tasks that include the following:  

1. applying this approach to specific and well identified individual clinical processes, 
2. performing comparative assessments across additional facilities, 
3. developing a classification system for clinical processes to allow for processing class-wide analytical 

approaches that exceed individual processes, and 
4. developing methods to measure process adherence that go beyond current data capturing. 

Collectively, the foregoing items constitute a work scope that can provide an important analytical tool 
for confirming more general process conformance within healthcare facilities. 

 
6. CONCLUSIONS 

The study described herein focused on the application of an approach that included process mining, 
process mapping, and statistical metrics to establish similarity between data-driven process models from 
two healthcare facilities. That approach was successful in validating conformance in the flow of clinical 
radiology orders for the VHA when a reference model was absent or incomplete. Finding good agreement 
between the process models for both facilities was important to confirm that the clinical orders flow in a 
similar manner and that no apparent consequences of patient harm were identified from the study. 
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